Minha sacola

    AN INTRODUCTION TO STATISTICAL LEARNING

    Favoritar
    Ref:
    972705

    De: R$ 2.454,98Por: R$ 1.718,49ou X de

    Economia de R$ 736,49

    Comprar

    Calcule o frete:

    Para envios internacionais, simule o frete no carrinho de compras.

    Calcule o valor do frete e prazo de entrega para a sua região

    Editora
    ISBN
    Páginas
    Idioma
    Peso
    Acabamento

    Sinopse

    An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.

    Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

    This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naïve Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility.

    Ficha Técnica

    Especificações

    ISBN9781071614174
    SubtítuloWITH APPLICATIONS IN R
    Pré vendaNão
    Peso1130g
    Autor para link
    Livro disponível - pronta entregaNão
    Dimensões23.88 x 20.32 x 3.05
    IdiomaInglês
    Tipo itemLivro Importado
    Número de páginas607
    Número da edição1ª EDIÇÃO - 2021
    Código Interno972705
    Código de barras9781071614174
    AcabamentoHARDCOVER
    AutorJAMES, GARETH
    EditoraSPRINGER
    Sob encomendaSim

    Conheça outros títulos da coleção

      Este livro é vendido

      SOB ENCOMENDA

      Prazo estimado para disponibilidade em estoque: dias úteis

      (Sujeito aos estoques de nossos fornecedores)

      +

      Prazo do frete selecionado.

      (Veja o prazo total na sacola de compras)

      Comprar