This book provides an exposition of the exciting field of control of oscillatory and chaotic systems, which has numerous potential applications in mechanics, laser and chemical technologies, communications, biology and medicine, economics, ecology, etc. A unique feature of the book is its systematic application of modern nonlinear and adaptive control theory to the new class of problems. The proposed control design methods are based on the concepts of Lyapunov functions, Poincare maps, speed-gradient and gradient algorithms. The conditions which ensure such control goals as an excitation or suppression of oscillations, synchronization and transformation from chaotic mode to the periodic one, or vice versa, are established. The performance and robustness of control systems under disturbances and uncertainties are evaluated. Researchers, teachers and graduate students in the fields of electrical and mechanical engineering, physics, chemistry, biology, economics will find this book most useful. Applied mathematicians and control engineers from various fields of technology dealing with complex oscillatory systems will also benefit from it.