Minha sacola

    acao-importados-50

    nao-usar-3

    LINEAR ALGEBRA AND OPTIMIZATION FOR MACHINE LEARNING

    Favoritar
    Ref:
    1009799

    De: R$ 1.562,18Por: R$ 1.093,53ou X de

    Economia de R$ 468,65

    Comprar

    Calcule o frete:

    Para envios internacionais, simule o frete no carrinho de compras.

    Calcule o valor do frete e prazo de entrega para a sua região

    Editora
    ISBN
    Páginas
    Idioma
    Peso
    Acabamento

    Sinopse

    This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows:

    1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts.

    2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks.

    Ficha Técnica

    Especificações

    ISBN9783030403430
    SubtítuloA TEXTBOOK
    Pré vendaNão
    Peso540g
    Autor para link
    Livro disponível - pronta entregaSim
    Dimensões23 x 16 x 1
    IdiomaInglês
    Tipo itemLivro Importado
    Número de páginas516
    Número da edição1ª EDIÇÃO - 2020
    Código Interno1009799
    Código de barras9783030403430
    AcabamentoPAPERBACK
    AutorAGGARWAL, CHARU C.
    EditoraSPRINGER
    Sob encomendaNão

    Conheça outros títulos da coleção

      Este livro é vendido

      SOB ENCOMENDA

      Prazo estimado para disponibilidade em estoque: dias úteis

      (Sujeito aos estoques de nossos fornecedores)

      +

      Prazo do frete selecionado.

      (Veja o prazo total na sacola de compras)

      Comprar