De: R$ 2.454,98Por: R$ 1.718,49ou X de
Economia de R$ 736,49Calcule o frete:
Para envios internacionais, simule o frete no carrinho de compras.
Calcule o valor do frete e prazo de entrega para a sua região
Sinopse
It starts with an introduction to Machine Learning concepts and algorithms such as the Perceptron, Multilayer Perceptron and the Distance-Weighted Nearest Neighbors with examples, in order to provide the necessary foundation so the reader is able to understand the Bias-Variance Dilemma, which is the central point of the Statistical Learning Theory.
Afterwards, we introduce all assumptions and formalize the Statistical Learning Theory, allowing the practical study of different classification algorithms. Then, we proceed with concentration inequalities until arriving to the Generalization and the Large-Margin bounds, providing the main motivations for the Support Vector Machines.
From that, we introduce all necessary optimization concepts related to the implementation of Support Vector Machines. To provide a next stage of development, the book finishes with a discussion on SVM kernels as a way and motivation to study data spaces and improve classification results.
Ficha Técnica
Especificações
ISBN | 9783319949888 |
---|---|
Subtítulo | A PRACTICAL APPROACH ON THE STATISTICAL LEARNING THEORY |
Pré venda | Não |
Peso | 721g |
Autor para link | MELLO RODRIGO FERNNDES DE,PONTI MOACIR ANTONELLI |
Livro disponível - pronta entrega | Não |
Dimensões | 23.4 x 15.6 x 2.2 |
Idioma | Inglês |
Tipo item | Livro Importado |
Número de páginas | 380 |
Número da edição | 1ª EDIÇÃO - 2018 |
Código Interno | 858527 |
Código de barras | 9783319949888 |
Acabamento | HARDCOVER |
Autor | MELLO, RODRIGO FERNNDES DE | PONTI, MOACIR ANTONELLI |
Editora | SPRINGER |
Sob encomenda | Sim |