The growth, reproduction and geographical distribution of plants are profoundly influenced by their physiological ecology: the interaction with the surrounding physical, chemical and biological environments. This textbook is notable in emphasizing that the mechanisms underlying plant physiological ecology can be found at the levels of biochemistry, biophysics, molecular biology and whole-plant physiology. At the same time, the integrative power of physiological ecology is well-suited to assess the costs, benefits and consequences of modifying plants for human needs, and to evaluate the role of plants in ecosystems. Plant Physiological Ecology begins with the primary processes of carbon metabolism and transport, plant-water relations, and energy balance. After considering individual leaves and whole plants, these physiological processes are then scaled up to the level of the canopy. Subsequent chapters discuss mineral nutrition and the ways in which plants cope with nutrient-deficient or toxic soils. The book then looks at patterns of growth and allocation, life-history traits, and interactions between plants and other organisms. Later chapters deal with traits that affect decomposition of plant material and with plant physiological ecology at the level of ecosystems and global environmental processes. Plant Physiological Ecology features numerous boxed entries that provide extended discussions of selected issues, a glossary, and numerous references to the primary and review literature. The significant new text is suitable for use in plant ecology courses, as well as classes ranging from plant physiology to plant molecular biology.