Minha sacola

    QUICK START GUIDE TO LARGE LANGUAGE MODELS

    Favoritar
    Ref:
    1087887

    Por: R$ 620,00ou X de

    Comprar

    Calcule o frete:

    Para envios internacionais, simule o frete no carrinho de compras.

    Calcule o valor do frete e prazo de entrega para a sua região

    Editora
    ISBN
    Páginas
    Idioma
    Peso
    Acabamento

    Sinopse

    The Practical, Step-by-Step Guide to Using LLMs at Scale in Projects and Products

    Large Language Models (LLMs) like ChatGPT are demonstrating breathtaking capabilities, but their size and complexity have deterred many practitioners from applying them. In Quick Start Guide to Large Language Models, pioneering data scientist and AI entrepreneur Sinan Ozdemir clears away those obstacles and provides a guide to working with, integrating, and deploying LLMs to solve practical problems.

    Ozdemir brings together all you need to get started, even if you have no direct experience with LLMs: step-by-step instructions, best practices, real-world case studies, hands-on exercises, and more. Along the way, he shares insights into LLMs' inner workings to help you optimize model choice, data formats, parameters, and performance. You'll find even more resources on the companion website, including sample datasets and code for working with open- and closed-source LLMs such as those from OpenAI (GPT-4 and ChatGPT), Google (BERT, T5, and Bard), EleutherAI (GPT-J and GPT-Neo), Cohere (the Command family), and Meta (BART and the LLaMA family).

    Learn key concepts: pre-training, transfer learning, fine-tuning, attention, embeddings, tokenization, and more
    Use APIs and Python to fine-tune and customize LLMs for your requirements
    Build a complete neural/semantic information retrieval system and attach to conversational LLMs for retrieval-augmented generation
    Master advanced prompt engineering techniques like output structuring, chain-ofthought, and semantic few-shot prompting
    Customize LLM embeddings to build a complete recommendation engine from scratch with user data
    Construct and fine-tune multimodal Transformer architectures using opensource LLMs
    Align LLMs using Reinforcement Learning from Human and AI Feedback (RLHF/RLAIF)
    Deploy prompts and custom fine-tuned LLMs to the cloud with scalability and evaluation pipelines in mind

    Ficha Técnica

    Especificações

    ISBN9780138199197
    SubtítuloSTRATEGIES AND BEST PRACTICES FOR USING CHATGPT AND OTHER LLMS
    Pré vendaNão
    Peso450g
    Autor para link
    Livro disponível - pronta entregaSim
    Dimensões22.61 x 18.54 x 1.44
    IdiomaInglês
    Tipo itemLIVRO IMPORTADO ADQ MERC INTERNO
    Número de páginas288
    Número da edição1ª EDIÇÃO - 2023
    Código Interno1087887
    Código de barras9780138199197
    AcabamentoPAPERBACK
    AutorOZDEMIR, SINAN
    EditoraADDISON WESLEY **
    Sob encomendaNão

    Conheça outros títulos da coleção

      Este livro é vendido

      SOB ENCOMENDA

      Prazo estimado para disponibilidade em estoque: dias úteis

      (Sujeito aos estoques de nossos fornecedores)

      +

      Prazo do frete selecionado.

      (Veja o prazo total na sacola de compras)

      Comprar