Calcule o frete:
Para envios internacionais, simule o frete no carrinho de compras.
Sinopse
Semi-Supervised Learning first presents the key assumptions and ideas underlying the field: smoothness, cluster or low-density separation, manifold structure, and transduction. The core of the book is the presentation of SSL methods, organized according to algorithmic strategies. After an examination of generative models, the book describes algorithms that implement the low-density separation assumption, graph-based methods, and algorithms that perform two-step learning. The book then discusses SSL applications and offers guidelines for SSL practitioners by analyzing the results of extensive benchmark experiments. Finally, the book looks at interesting directions for SSL research. The book closes with a discussion of the relationship between semi-supervised learning and transduction.
Ficha Técnica
Especificações
ISBN | 9780262033589 |
---|---|
Pré venda | Não |
Peso | 590g |
Autor para link | VÁRIOS AUTORES,CHAPELLE OLIVIER |
Livro disponível - pronta entrega | Não |
Dimensões | 23 x 16 x 1 |
Tipo item | Livro Importado |
Número de páginas | 528 |
Número da edição | 1ª EDIÇÃO - 2006 |
Código Interno | 629546 |
Código de barras | 9780262033589 |
Acabamento | PAPERBACK |
Autor | VÁRIOS AUTORES | CHAPELLE, OLIVIER |
Editora | MIT PRESS |
Sob encomenda | Não |